Fiberguide’s SPC & APC fibers feature a polymer cladding. This polymer cladding enables a NA of 0.37, but it differs from the hard polymer cladding because the polymer cladding offers better radiation stability making these fibers are the ideal choice for nuclear research and sensing applications.

FIBER SPECIFICATIONS
- **Fiber Type:** Step Index Multimode
- **Fiber Construction:** Silica Core / Polymer Clad / Polymer Coated
- **Trade Name:** Anhydroguide™ VIS-IR (Low OH) 300nm – 2400nm
- **Superguide™ UV-VIS (High OH) 190nm – 1250nm
- **Recommended Bend Radius:**
 - Short Term: 100 X Core Diameter
 - Long Term: 200 X Core Diameter
- **100% Proof Test Using 4-Axis Bend Method**
- **Nylon certified to NAMSA Class VI**
- **NA Note**
The theoretical numerical aperture for Silica Fibers, as calculated from the refractive indices of the core and cladding materials, only persists for short fiber lengths, guided light rays near to the maximum acceptance angle are selectively attenuated by the cladding material so that a somewhat reduced effective or “steady state” numerical aperture governs transmission for distances over 50 meters.
- **Applications:**
 - Bio-Analytical Sensing
 - Medical Laser
 - Dental Curing
 - Spectroscopy
 - Nuclear Plasma Sensing
 - Photodynamic Therapy
Fiber Type: Anhydroguide™ Pure Fused Silica Core/Polymer Cladding - Step Index Multimode
Wavelength: VIS-IR (Low OH): 300 nm - 2400 nm

Attenuation (dB/km) vs. Wavelength (nm)

Transmission (%/m) vs. Wavelength (nm)
Fiber Type: Superguide™ Pure Fused Silica Core/Polymer Cladding - Step Index Multimode

Wavelength: UV-VIS (High OH): 190 nm - 1250 nm
Fiber Type:
- Step Index Multimode
- Polymer Coated Fiber

Trade Name:
- Anhydroguide™
 - VIS-IR (Low OH)
 - Wavelength: 300 nm – 2400 nm
- Superguide™
 - UV-VIS (High OH)
 - Wavelength: 190 nm – 1250 nm

Fiber Construction:
- Silica Core/
- Polymer Clad/
- Polymer Coated

Temperature:
- nylon coating: -40˚C to +100˚C / -40˚F to + 212˚F

Fiber Type:
- Anhydroguide™ Silica Core/Polymer Cladding - Step Index Multimode

Wavelength:
- VIS-IR: 300 nm - 2400 nm (Low OH)

Numerical Aperture (NA):
- Standard: 0.37 ± 0.02 (Full acceptance Angle 43˚)

Proof Test:
- 100 KPSI 4-Axis Bend Test

Nylon Coating
- Temperature: -40˚C to +100˚C / -40˚F to + 212˚F

Fiber Type:
- Anhydroguide™ Silica Core/Polymer Cladding - Step Index Multimode

Wavelength:
- VIS-IR: 300 nm - 2400 nm (Low OH)

Numerical Aperture (NA):
- Standard: 0.37 ± 0.02 (Full acceptance Angle 43˚)

Proof Test:
- 100 KPSI 4-Axis Bend Test

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Core Diameter (µm)</th>
<th>Cladding Diameter (µm)</th>
<th>Coating Diameter (µm)</th>
<th>Bend Radius Short Term/Long Term (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APC200/300/370N</td>
<td>200 ± 4</td>
<td>300 ± 6</td>
<td>370 ± 19</td>
<td>≥ 20/40</td>
</tr>
<tr>
<td>APC300/400/500N</td>
<td>300 ± 6</td>
<td>400 ± 8</td>
<td>500 ± 25</td>
<td>≥ 30/60</td>
</tr>
<tr>
<td>APC400/500/600N</td>
<td>400 ± 8</td>
<td>500 ± 10</td>
<td>600 ± 30</td>
<td>≥ 40/80</td>
</tr>
<tr>
<td>APC600/700/800N</td>
<td>600 ± 12</td>
<td>700 ± 14</td>
<td>800 ± 40</td>
<td>≥ 60/120</td>
</tr>
<tr>
<td>APC800/900/1000N</td>
<td>800 ± 16</td>
<td>900 ± 18</td>
<td>1000 ± 50</td>
<td>≥ 80/160</td>
</tr>
<tr>
<td>APC1000/1100/1200N</td>
<td>1000 ± 20</td>
<td>1100 ± 22</td>
<td>1200 ± 60</td>
<td>≥ 100/200</td>
</tr>
<tr>
<td>APC1500/1650/1800N</td>
<td>1500 ± 30</td>
<td>1650 ± 33</td>
<td>1800 ± 90</td>
<td>≥ 150/300</td>
</tr>
<tr>
<td>APC2000/2150/2300N</td>
<td>2000 ± 40</td>
<td>2150 ± 43</td>
<td>2300 ± 115</td>
<td>≥ 200/400</td>
</tr>
</tbody>
</table>

Nylon Coating
- Temperature: -40˚C to +100˚C / -40˚F to + 212˚F

Fiber Type:
- Superguide™ Silica Core/Polymer Cladding - Step Index Multimode

Wavelength:
- UV-VIS: 190 nm - 1250 nm (High OH)

Numerical Aperture (NA):
- Standard: 0.37 ± 0.02 (Full acceptance Angle 43˚)

Proof Test:
- 100 KPSI 4-Axis Bend Test

<table>
<thead>
<tr>
<th>Product Code</th>
<th>Core Diameter (µm)</th>
<th>Cladding Diameter (µm)</th>
<th>Coating Diameter (µm)</th>
<th>Bend Radius Short Term/Long Term (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPC200/300/370N</td>
<td>200 ± 4</td>
<td>300 ± 6</td>
<td>370 ± 19</td>
<td>≥ 20/40</td>
</tr>
<tr>
<td>SPC300/400/500N</td>
<td>300 ± 6</td>
<td>400 ± 8</td>
<td>500 ± 25</td>
<td>≥ 30/60</td>
</tr>
<tr>
<td>SPC400/500/600N</td>
<td>400 ± 8</td>
<td>500 ± 10</td>
<td>600 ± 30</td>
<td>≥ 40/80</td>
</tr>
<tr>
<td>SPC600/700/800N</td>
<td>600 ± 12</td>
<td>700 ± 14</td>
<td>800 ± 40</td>
<td>≥ 60/120</td>
</tr>
<tr>
<td>SPC800/900/1000N</td>
<td>800 ± 16</td>
<td>900 ± 18</td>
<td>1000 ± 50</td>
<td>≥ 80/160</td>
</tr>
<tr>
<td>SPC1000/1100/1200N</td>
<td>1000 ± 20</td>
<td>1100 ± 22</td>
<td>1200 ± 60</td>
<td>≥ 100/200</td>
</tr>
<tr>
<td>SPC1500/1650/1800N</td>
<td>1500 ± 30</td>
<td>1650 ± 33</td>
<td>1800 ± 90</td>
<td>≥ 150/300</td>
</tr>
<tr>
<td>SPC2000/2150/2300N</td>
<td>2000 ± 40</td>
<td>2150 ± 43</td>
<td>2300 ± 115</td>
<td>≥ 200/400</td>
</tr>
</tbody>
</table>